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The focus of my thesis has been on providing low latency at industrial-scale systems. I treat latency as a first-
class citizen in my research. Most of my work is deployed in large-scale and mainstream production systems (e.g.,
Ambry and Samza) with hundreds of millions of users.

In the era of increased engagement with technology, many highly interactive applications processing large
amounts of data have emerged. For example, we expect social networks to show us current global and local
hashtag trends within seconds, ad campaigns to orient ads based on current user activity, data from IoT (Internet
of Things) to be processed within seconds/minutes, and multi-user online gaming to react with milliseconds. In
all these diverse areas, handling large scale data in a real-time fashion is a critical need.

At large scale, providing low latency becomes increasingly challenging. Large scale necessitates distributing
both processing and storage across large clusters of machines. In many cases, this distribution needs to be spread
across the globe for proximity to the data source, while being replicated in multiple locations to handle inevitable
failures at scale. Distribution and replication cause load imbalance, scheduling complexities, and excessive use of
expensive inter-datacenter traffic. These issues significantly increase latency, especially that they typically impact
the critical path of processing.

My research has focused on designing and developing systems that broadly explore these issues with particular
attention to improving end-to-end latency and building massive-scale solutions. My research contributions span:

1. Geo-distributed Storage: Collaborated with LinkedIn to develop Ambry, a low-latency geo-distributed
object store efficient for both small (few KB) and large (few GB) objects [1]. Ambry, including my code
contribution, has been the mainstream media storage (photos, documents, slides, etc.) at LinkedIn for over
two years.

2. Stream Processing: Researched and developed solutions for three major challenges in stream processing
[2]: a) managing large amount of state (100s of TB in a single job) in a fault-tolerant manner b) automati-
cally scaling the total resources of a job [3, 4], and c) rebalancing resources among various elements of a job
[5]. My work is integrated in two of the most popular Stream Processing frameworks, Apache Storm and
Apache Samza. Two of my projects are deployed in LinkedIn’s production across over 200 applications, and
part of Apache Samza.

3. Container Networking: Designed FreeFlow, a container networking solution which achieves both high
performance and good portability by leveraging container location information and adding trust among
containers belonging to the same application[6]. The team I worked with at Microsoft are analyzing adding
this contribution to their production container technology.

1 Geo-distributed Storage
Ambry – Geo-distributed Low Latency Object Storage. For over 24 months, Ambry has been the mainstream
storage for all LinkedIn’s media objects, across all of its four datacenters, serving more than 450 million users.
In today’s high-tech connected world, an immense amount of data is generated every second from all around the
world. Social networks alone generated billions of variable-sized media objects per day. This excessive amount of
diverse data needs to be served with low latency from all across the globe, while transparently scaling to match
the ever-growing amount of data. In collaboration with LinkedIn, we developed Ambry, a geo-distributed, scalable,
and low-latency object store for a broad range of objects (a few KBs to a few GBs) [1]. I have been part of the
team from the early phases of the project, and have led the effort on rebalancing the system to achieve seamless
scalability.

Ambry exploits three main design principals. First, small overheads are significant for small objects. Thus,
Ambry groups objects into logical units and treats the unit as a single entity. Second, datacenters should be as
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independent as possible. To achieve this, Ambry serves request in one data center, and later, using a background
asynchronous replication mechanism, propagates data to other datacenters. Finally, load imbalance is inevitable
during expansion (scale out) – new machines are empty while old machines have years-old and unpopular data.
Ambry uses a non-intrusive rebalancing strategy based on popularity, access patterns, and size. This strategy uses
the spare network bandwidth to move data around in the background.

2 Stream Processing
Stream processing systems provide a useful abstraction: a “stream of infinite data” that should be processed in
real-time. The convenience and large scale of these systems have attracted a broad community of users [2]. In
my research, I tackled three challenging issues in this area. How to handle large amount of state along with
processing? How to automatically scale resources of a job? How to distribute and balance resources among a job?
I have developed open-source solutions for these issues, and two of my projects are employed by LinkedIn.

Stateful Stream Processing at Scale. Stateful processing is inherent to many categories of applications, such as
large joins, cumulative or compact aggregates, static settings, or machine learning models. As part of my PhD, I
worked on handling a large amount of state efficiently while recovering quickly from failures.

When it comes to large state, relying on an external storage is not a viable solution (orders of magnitude
degradation in latency and throughput). Therefore, we developed a state handling mechanism in Apache Samza
that leverages the local storage of the computing nodes [7]. Our approach partitions state across nodes using the
disk as permanent storage and memory as a cache – achieving both the low latency of memory and the large
capacity of the disk. Along with state, we use a low-overhead background changelog mechanism for fault-handling
and speed-up recovery using periodic compaction, parallel recovery, and location aware rescheduling of failed
tasks. Our system has successfully been in production running more than 200 applications on over 10,000
containers while processing trillions of events per day.

Auto-scaling – Automatic Total Resource Allocation: Finding the ideal resource allocation such that input is
not queued, jobs do not fail, and resources are not under-utilized is a sophisticated and time-consuming task. In
the case of any workload or logic change, the whole tuning process has to be repeated. Unfortunately, application
developers tend to over-provision and waste resources. My contribution has been to automate this configuration
by iteratively scaling (adding or removing) resources until a near optimal allocation is reached [3]. As an intern
at LinkedIn, I integrated an three phase feedback loop auto-scaler (profiling, triggering, and scaling) into Apache
Samza. Exploiting queuing theory and bin-packing, the auto-scaler detects over- and under-utilized jobs and
scales them accordingly. The results of my work are employed by LinkedIn.

Rebalancing – Redistributing Resources within a Job: Along with deciding the total resources, another exciting
challenge is how to allocate resources among the various elements of a job? Stream processing jobs are formed as
a DAG of operators, with a fixed amount of resources distributed across the DAG. Poor resource distribution
creates bottlenecks, which in turn slow down the whole pipeline. During my PhD, I developed a queuing theory
based rebalancing strategy on top of Apache Storm [5]. This approach adaptively redistributes resources among
operators until all bottlenecks are resolved even in the presence of workload changes.

3 Container Networking
FreeFlow – High Performance Cross Container Networking. During an internship at Microsoft Research, I
worked on FreeFlow [6], a container networking solution which achieves both high performance and good porta-
bility. Containerization has piqued a strong interest in Big Data Analytics particularly because of its high porta-
bility and low overhead – containers have no external dependencies while having an independent and isolated
namespace. However, current container networking solutions have either poor performance or portability, un-
dermining the advantages of containerization. To fill this gap, we designed and developed FreeFlow, a high
performance and portable container networking solution.

FreeFlow leverages two insights: first, in most container deployments a central entity (i.e. the orchestrator)
exists that is fully aware of the location of each container. Second, strict isolation is unnecessary among containers
belonging to the same application, e.g., containers of a single MapReduce job. Leveraging these two observations,
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FreeFlow uses a variety of technologies such as shared memory and RDMA to improve network performance
(higher throughput, lower latency, and less CPU overhead), while maintaining full portability and does all this in
a manner that is completely transparent to application developers.

4 Future Research
Edge Computing (or so called the “Edge”) is becoming a leading technology, opening the venue for a wide range
of interesting applications ranging from self-driving cars, smart cities/homes, to wireless Virtual and Augmented
Reality. In the future, I plan to build on my experience in large scale low-latency system development towards
building a sustainable easy-to-use end-to-end framework for Edge computing. This avenue provides an interesting
combination of multidisciplinary design and system building problems. I believe I can have a noticeable and
lasting impact on this emerging area of Big Data.

Managing Millions of Geo-distributed Edges. Reaching the vision of “Edge-everwhere” – having the Edge
available in any location – opens an important research avenue of how to monitor, manage, and revive Edges at
large scale? Many interesting questions need to be answered: How to scale management to hundreds of thousands
of Edges? How to provide high availability and fault tolerance? How to recover from the common human errors
in such an environment (e.g., unplugging the device)? How to handle a dead Edge that needs to be replaced?

What makes these issues particularly interesting in Edge computing is geo-distribution, heterogeneity of de-
vices, and the unreliability of the environment. The network to/from Edges is an unreliable, (usually) expensive,
and low-bandwidth network. Finally, the Edge devices are faulty and diverse with various hardware configura-
tions/capacities.

Multi-tenancy at the Edge. In a setting with many limited-resource Edges and several diverse jobs, how should
applications be scheduled? Edge computing has a unique resource distribution pattern. Edges are heterogeneous,
fast (near the data source), and with limited resources and bandwidth. On the other hand, the Cloud is a
complimentary option, with homogeneous high-resource high(er)-latency resources. On this platform, a broad
mix of latency sensitive, resource/bandwidth heavy, energy limited, and privacy constrained applications need to
run concurrently.

This unique setting opens an exciting avenue on how to scheduling diverse multi-tenant jobs, with many
questions to address. For a given application, which part(s) should run on the close-by while limited-resource
Edge and which on the Cloud? Which jobs should be prioritized to use the Edge? When a new job comes in, how
should the system react? How to minimize the impact of jobs on one another? How to schedule a broad mix of
jobs to increase utilization without hurting performance? During the internship at Microsoft Research, I started
investigating how to partition a job across an Edge and a Cloud. The focus of this work was building a scheduling
mechanism that hides the heterogeneity at the Edges while being scalable. I plan to continue researching in this
area to build a pluggable end-to-end solution.

Media Processing Using the Edge. Given the communication heavy, computation heavy, and latency sensitive
nature of media processing, how can the Edge be used to facilitate media processing? Media has become dominant
in almost all aspects of our lives, from medical, military and security to social media. However, processing
media requires special treatment mainly because it is both communication heavy (large objects) and computation
heavy (complex processing) [8]. Moreover, in many use cases timeliness is also crucial, e.g., Virtual Reality and
self-driving cars. These requirements make using the Cloud unpractical, either because of latency or the high
bandwidth required. My plan is to build low latency media processing environments by leveraging the Edge. The
goal is to create an easy-to-use framework that automatically detects latency sensitive and resource sensitive
operations in an application and transparently partitions the application across the close by Edges and the Cloud.
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